HashMap 源码分析

对于底层实现以及简介见 Map相关常见知识(重)#HashMap 的底层实现

可能需要的参考资料:

类的属性:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
    // 序列号
    private static final long serialVersionUID = 362498820763181265L;
    // 默认的初始容量是16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    // 最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默认的负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 当桶(bucket)上的结点数大于等于这个值时会转成红黑树
    static final int TREEIFY_THRESHOLD = 8;
    // 当桶(bucket)上的结点数小于等于这个值时树转链表
    static final int UNTREEIFY_THRESHOLD = 6;
    // 桶中结构转化为红黑树对应的table的最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 存储元素的数组,总是2的幂次倍
    transient Node<k,v>[] table;
    // 一个包含了映射中所有键值对的集合视图
    transient Set<map.entry<k,v>> entrySet;
    // 存放元素的个数,注意这个不等于数组的长度。
    transient int size;
    // 每次扩容和更改map结构的计数器
    transient int modCount;
    // 阈值(容量*负载因子) 当实际大小超过阈值时,会进行扩容
    int threshold;
    // 负载因子
    final float loadFactor;
}

构造方法

值得注意的是四个构造方法中,都初始化了负载因子 loadFactor,由于 HashMap 中没有 capacity 这样的字段,即使指定了初始化容量 initialCapacity ,也只是通过 tableSizeFor 将其扩容到与 initialCapacity 最接近的 2 的幂次方大小,然后暂时赋值给 threshold ,后续通过 resize 方法将 threshold 赋值给 newCap 进行 table 的初始化。

// 默认构造函数。
public HashMap() {
	this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
 }

 // 包含另一个“Map”的构造函数
 public HashMap(Map<? extends K, ? extends V> m) {
	 this.loadFactor = DEFAULT_LOAD_FACTOR;
	 putMapEntries(m, false);//下面会分析到这个方法
 }

 // 指定“容量大小”的构造函数
 public HashMap(int initialCapacity) {
	 this(initialCapacity, DEFAULT_LOAD_FACTOR);
 }

 // 指定“容量大小”和“负载因子”的构造函数
 public HashMap(int initialCapacity, float loadFactor) {
	 if (initialCapacity < 0)
		 throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
	 if (initialCapacity > MAXIMUM_CAPACITY)
		 initialCapacity = MAXIMUM_CAPACITY;
	 if (loadFactor <= 0 || Float.isNaN(loadFactor))
		 throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
	 this.loadFactor = loadFactor;
	 // 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化
	 this.threshold = tableSizeFor(initialCapacity);
 }

putMapEntries 方法:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    int s = m.size();
    if (s > 0) {
        // 判断table是否已经初始化
        if (table == null) { // pre-size
            /*
             * 未初始化,s为m的实际元素个数,ft=s/loadFactor => s=ft*loadFactor, 跟我们前面提到的
             * 阈值=容量*负载因子 是不是很像,是的,ft指的是要添加s个元素所需的最小的容量
             */
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                    (int)ft : MAXIMUM_CAPACITY);
            /*
             * 根据构造函数可知,table未初始化,threshold实际上是存放的初始化容量,如果添加s个元素所
             * 需的最小容量大于初始化容量,则将最小容量扩容为最接近的2的幂次方大小作为初始化。
             * 注意这里不是初始化阈值
             */
            if (t > threshold)
                threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中,如果table未初始化,putVal中会调用resize初始化或扩容
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

put 方法

putVal 方法添加元素的分析如下:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素(处理hash冲突)
    else {
        Node<K,V> e; K k;
        //快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
        // 判断插入的是否是红黑树节点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 不是红黑树节点则说明为链表结点
        else {
            // 在链表最末插入结点
            for (int binCount = 0; ; ++binCount) {
                // 到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
                    // 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
                    // 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。否则,就是只是对数组扩容。
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) {
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

对于 JDK1.7 的 putval 方法:
① 如果定位到的数组位置没有元素就直接插入。
② 如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的 key 比较,如果 key 相同就直接覆盖,不同就采用头插法插入元素。